Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
1.
Viruses ; 16(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543776

RESUMO

Rotaviruses are a significant cause of severe, potentially life-threatening gastroenteritis in infants and the young of many economically important animals. Although vaccines against porcine rotavirus exist, both live oral and inactivated, their effectiveness in preventing gastroenteritis is less than ideal. Thus, there is a need for the development of new generations of porcine rotavirus vaccines. The Ohio State University (OSU) rotavirus strain represents a Rotavirus A species with a G5P[7] genotype, the genotype most frequently associated with rotavirus disease in piglets. Using complete genome sequences that were determined via Nanopore sequencing, we developed a robust reverse genetics system enabling the recovery of recombinant (r)OSU rotavirus. Although rOSU grew to high titers (~107 plaque-forming units/mL), its growth kinetics were modestly decreased in comparison to the laboratory-adapted OSU virus. The reverse genetics system was used to generate the rOSU rotavirus, which served as an expression vector for a foreign protein. Specifically, by engineering a fused NSP3-2A-UnaG open reading frame into the segment 7 RNA, we produced a genetically stable rOSU virus that expressed the fluorescent UnaG protein as a functional separate product. Together, these findings raise the possibility of producing improved live oral porcine rotavirus vaccines through reverse-genetics-based modification or combination porcine rotavirus vaccines that can express neutralizing antigens for other porcine enteric diseases.


Assuntos
Gastroenterite , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Humanos , Animais , Suínos , Genética Reversa , Ohio , Universidades , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/veterinária , Gastroenterite/prevenção & controle , Gastroenterite/veterinária
2.
Virology ; 593: 110028, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38394980

RESUMO

Sugarcane streak mosaic virus (SCSMV) is one of the major pathogens of sugarcane in the world. Molecular studies and disease management of SCSMV are hindered by the lack of efficient infectious clones. In this study, we successfully constructed Agrobacterium infiltration based infectious clone of SCSMV with different variants. Infectious clones of wild type SCSMV could efficiently infect Nicotiana benthamiana and sugarcane plants resulting in streak and mosaic symptoms on systemic leaves which were further confirmed with RT-PCR and serological assays. SCSMV variants of less adenylation displayed attenuated pathogenicity on N.benthamiana. SCSMV-based recombinant heterologous EGFP protein vector was also developed. The EGFP-tagged recombinant SCSMV could highly expressed in vegetative organs including roots. These infectious clones of SCSMV could be further developed for platform tools for both biotechnological studies and management of SCSMV disease.


Assuntos
Potyviridae , Saccharum , Doenças das Plantas , Filogenia , Potyviridae/genética
3.
Mol Biotechnol ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363529

RESUMO

The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.

4.
Front Microbiol ; 15: 1311290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419637

RESUMO

Numerous cyanobacteria capable of oxygenic photosynthesis possess multiple large plasmids exceeding 100 kbp in size. These plasmids are believed to have distinct replication and distribution mechanisms, as they coexist within cells without causing incompatibilities between plasmids. However, information on plasmid replication proteins (Rep) in cyanobacteria is limited. Synechocystis sp. PCC 6803 hosts four large plasmids, pSYSM, pSYSX, pSYSA, and pSYSG, but Rep proteins for these plasmids, except for CyRepA1 on pSYSA, are unknown. Using Autonomous Replication sequencing (AR-seq), we identified two potential Rep genes in Synechocystis 6803, slr6031 and slr6090, both located on pSYSX. The corresponding Rep candidates, Slr6031 and Slr6090, share structural similarities with Rep-associated proteins of other bacteria and homologs were also identified in various cyanobacteria. We observed autonomous replication activity for Slr6031 and Slr6090 in Synechococcus elongatus PCC 7942 by fusing their genes with a construct expressing GFP and introducing them via transformation. The slr6031/slr6090-containing plasmids exhibited lower copy numbers and instability in Synechococcus 7942 cells compared to the expression vector pYS. While recombination occurred in the case of slr6090, the engineered plasmid with slr6031 coexisted with plasmids encoding CyRepA1 or Slr6090 in Synechococcus 7942 cells, indicating the compatibility of Slr6031 and Slr6090 with CyRepA1. Based on these results, we designated Slr6031 and Slr6090 as CyRepX1 (Cyanobacterial Rep-related protein encoded on pSYSX) and CyRepX2, respectively, demonstrating that pSYSX is a plasmid with "two Reps in one plasmid." Furthermore, we determined the copy number and stability of plasmids with cyanobacterial Reps in Synechococcus 7942 and Synechocystis 6803 to elucidate their potential applications. The novel properties of CyRepX1 and 2, as revealed by this study, hold promise for the development of innovative genetic engineering tools in cyanobacteria.

5.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397006

RESUMO

During the emergence of infectious diseases, evaluating the efficacy of newly developed vaccines requires antigen proteins. Available methods enhance antigen protein productivity; however, structural modifications may occur. Therefore, we aimed to construct a novel transient overexpression vector capable of rapidly producing large quantities of antigenic proteins in mammalian cell lines. This involved expanding beyond the exclusive use of the human cytomegalovirus (CMV) promoter, and was achieved by incorporating a transcriptional enhancer (CMV enhancer), a translational enhancer (woodchuck hepatitis virus post-transcriptional regulatory element), and a promoter based on the CMV promoter. Twenty novel transient expression vectors were constructed, with the vector containing the human elongation factor 1-alpha (EF-1a) promoter showing the highest efficiency in expressing foreign proteins. This vector exhibited an approximately 27-fold higher expression of enhanced green fluorescent protein than the control vector containing only the CMV promoter. It also expressed the highest level of severe acute respiratory syndrome coronavirus 2 receptor-binding domain protein. These observations possibly result from the simultaneous enhancement of the transcriptional activity of the CMV promoter and the human EF-1a promoter by the CMV enhancer. Additionally, the synergistic effect between the CMV and human EF-1a promoters likely contributed to the further enhancement of protein expression.


Assuntos
Infecções por Citomegalovirus , Vetores Genéticos , Animais , Humanos , Vetores Genéticos/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Linhagem Celular , Mamíferos
6.
Protein Expr Purif ; 215: 106406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995943

RESUMO

The baculovirus expression system is a powerful and widely used method to generate large quantities of recombinant protein. However, challenges exist in workflows utilizing either liquid baculovirus stocks or the Titerless Infected-Cells Preservation and Scale-Up (TIPS) method, including the time and effort to generate baculoviruses, screen for protein expression and store large numbers of baculovirus stocks. To mitigate these challenges, we have developed a streamlined, hybrid workflow which utilizes high titer liquid virus stocks for rapid plate-based protein expression screening, followed by a TIPS-based scale-up for larger protein production efforts. Additionally, we have automated each step in this screening workflow using a custom robotic system. With these process improvements, we have significantly reduced the time, effort and resources required to manage large baculovirus generation and expression screening campaigns.


Assuntos
Baculoviridae , Triagem , Fluxo de Trabalho , Baculoviridae/genética , Baculoviridae/metabolismo , Proteínas Recombinantes , Vetores Genéticos
7.
Viruses ; 15(10)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896759

RESUMO

Baculovirus expression system1s are a widely used tool in recombinant protein and biologics production. To enable the possibility of genome modifications unconstrained through low-throughput and bespoke classical genome manipulation techniques, we set out to construct a baculovirus vector (>130 kb dsDNA) built from modular, chemically synthesized DNA parts. We constructed a synthetic version of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) through two steps of hierarchical Golden Gate assembly. Over 140 restriction endonuclease sites were removed to enable the discrimination of the synthetic genome from native baculovirus genomes. A head-to-head comparison of our modular, synthetic AcMNPV genome with native baculovirus vectors showed no significant difference in baculovirus growth kinetics or recombinant adeno-associated virus production-suggesting that neither baculovirus replication nor very-late gene expression were compromised by our design or assembly method. With unprecedented control over the AcMNPV genome at the single-nucleotide level, we hope to ambitiously explore novel AcMNPV vectors streamlined for biologics production and development.


Assuntos
Produtos Biológicos , Nucleopoliedrovírus , Animais , Baculoviridae/genética , Nucleopoliedrovírus/genética , DNA/metabolismo , Spodoptera , Replicação Viral
8.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37830788

RESUMO

Reverse genetic systems have been used to introduce heterologous sequences into the rotavirus segmented double-stranded (ds)RNA genome, enabling the generation of recombinant viruses that express foreign proteins and possibly serve as vaccine vectors. Notably, insertion of SARS-CoV-2 sequences into the segment seven (NSP3) RNA of simian SA11 rotavirus was previously shown to result in the production of recombinant viruses that efficiently expressed the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the S1 region of the SARS-CoV-2 spike protein. However, efforts to generate a similar recombinant (r) SA11 virus that efficiently expressed full-length S1 were less successful. In this study, we describe modifications to the S1-coding cassette inserted in the segment seven RNA that allowed recovery of second-generation rSA11 viruses that efficiently expressed the ~120-kDa S1 protein. The ~120-kDa S1 products were shown to be glycosylated, based on treatment with endoglycosidase H, which reduced the protein to a size of ~80 kDa. Co-pulldown assays demonstrated that the ~120-kDa S1 proteins had affinity for the human ACE2 receptor. Although all the second-generation rSA11 viruses expressed glycosylated S1 with affinity for the ACE receptor, only the S1 product of one virus (rSA11/S1f) was appropriately recognized by anti-S1 antibodies, suggesting the rSA11/S1f virus expressed an authentic form of S1. Compared to the other second-generation rSA11 viruses, the design of the rSA11/S1f was unique, encoding an S1 product that did not include an N-terminal FLAG tag. Probably due to the impact of FLAG tags upstream of the S1 signal peptides, the S1 products of the other viruses (rSA11/3fS1 and rSA11/3fS1-His) may have undergone defective glycosylation, impeding antibody binding. In summary, these results indicate that recombinant rotaviruses can serve as expression vectors of foreign glycosylated proteins, raising the possibility of generating rotavirus-based vaccines that can induce protective immune responses against enteric and mucosal viruses with glycosylated capsid components, including SARS-CoV-2.


Assuntos
COVID-19 , Rotavirus , Humanos , Rotavirus/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , RNA
9.
Heliyon ; 9(9): e19855, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810018

RESUMO

Transgenic expression of proteins in plants is central to research and biotechnology, and, often, it is desirable to obtain this expression without altering the nuclear or plastid genomes. Thus, expression vectors based on plant viruses that infect multiple cells are useful; furthermore, they are also advantageous for studies of the life cycle of the virus itself. Here, we report the development of an expression vector based on a Turnip vein-clearing virus (TVCV), a tobamovirus known to easily infect two model plants, Nicotiana benthamiana, and Arabidopsis thaliana. Avoiding restriction digestion, we utilized a restriction-ligation-independent cloning approach to construct an infectious cDNA clone of TVCV from the viral RNA and then to convert this clone to a gene expression vector adapted for Gateway-based recombination cloning for transgene insertion. The functionality of the resulting vector, designated pTVCV-DEST, was validated by the expression of an autofluorescent reporter transgene following agroinoculation of the target plant.

10.
Mol Ther Methods Clin Dev ; 30: 122-146, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37746245

RESUMO

Current manufacturing processes for recombinant adeno-associated viruses (rAAVs) have less-than-desired yields and produce significant amounts of empty capsids. The increasing demand and the high cost of goods for rAAV-based gene therapies motivate development of more efficient manufacturing processes. Recently, the US Food and Drug Administration (FDA) approved the first rAAV-based gene therapy product manufactured in the baculovirus expression vector system (BEVS), a technology that demonstrated production of high titers of full capsids. This work presents a first mechanistic model describing the key extracellular and intracellular phenomena occurring during baculovirus infection and rAAV maturation in the BEVS. The model predictions are successfully validated for in-house and literature experimental measurements of the vector genome and of structural and non-structural proteins collected during rAAV manufacturing in the BEVS with the TwoBac and ThreeBac constructs. A model-based analysis of the process is carried out to identify the bottlenecks that limit full capsid formation. Vector genome amplification is found to be the limiting step for rAAV production in Sf9 cells using either the TwoBac or ThreeBac system. In turn, vector genome amplification is hindered by limiting Rep78 levels. Transgene and non-essential baculovirus protein expression in the insect cell during rAAV manufacturing also negatively influences the rAAV production yields.

11.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2634-2643, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37584120

RESUMO

The antigen gene expression level of a DNA vaccine is the key factor influencing the efficacy of the DNA vaccine. Accordingly, one of the ways to improve the antigen gene expression level of a DNA vaccine is to utilize a plasmid vector that is replicable in eukaryotic cells. A replicative DNA vaccine vector pCMVori was constructed based on the non-replicative pcDNA3.1 and the replicon of porcine circovirus 2 (PCV2) in this study. An EGFP gene was cloned into pCMVori and the control plasmid pcDNA3.1. The two recombinant vectors were transfected into PK-15 cell, and the plasmid DNA and RNA were extracted from the transfected cells. Real-time PCR was used to determine the plasmid replication efficiency of the two plasmids using plasmid before and after Bcl Ⅰ digestion as templates, and the transcription level of the Rep gene in PCV2 replicon was detected by RT-PCR. The average fluorescence intensity of cells transfected with the two plasmids was analyzed with software Image J, and the transcription level of EGFP was determined by means of real-time RT-PCR. The results showed that the replication efficiency of pCMVori in PK-15 cells incubated for 48 h was 136%, and the transcriptions of Rep and Rep' were verified by RT-PCR. The average fluorescence intensity of the cells transfected with pCMVori-EGFP was 39.14% higher than that of pcDNA3.1-EGFP, and the transcription level of EGFP in the former was also 40% higher than that in the latter. In conclusion, the DNA vaccine vector pCMVori constructed in this study can independently replicate in eukaryotic cells. As a result, the expression level of cloned target gene was elevated, providing a basis for developing the pCMVori-based DNA vaccine.


Assuntos
Circovirus , Vacinas de DNA , Animais , Suínos , Circovirus/genética , Vacinas de DNA/genética , Replicon/genética , Vetores Genéticos/genética , Plasmídeos/genética
12.
ACS Synth Biol ; 12(8): 2329-2338, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37558215

RESUMO

Biological DNA transfer into plant cells mediated by Agrobacterium represents one of the most powerful tools for the engineering and study of plant systems. Transient expression of transfer DNA (T-DNA) in particular enables rapid testing of gene products and has been harnessed for facile combinatorial expression of multiple genes. In analogous mammalian cell-based gene expression systems, a clear sense of the multiplicity of infection (MOI) allows users to predict and control viral transfection frequencies for applications requiring single versus multiple transfection events per cell. Despite the value of Agrobacterium-mediated transient transformation of plants, MOI has not been quantified. Here, we analyze the Poisson probability distribution of the T-DNA transfer in leaf pavement cells to determine the MOI for the widely used model system Agrobacterium GV3101/Nicotiana benthamiana. These data delineate the relationship between an individual Agrobacterium strain infiltration OD600, plant cell perimeter, and leaf age, as well as plant cell coinfection rates. Our analysis establishes experimental regimes where the probability of near-simultaneous delivery of >20 unique T-DNAs to a given plant cell remains high throughout the leaf at infiltration OD600 above ∼0.2 for individual strains. In contrast, single-strain T-DNA delivery can be achieved at low strain infiltration OD600: at OD600 0.02, we observe that ∼40% of plant cells are infected, with 80% of those infected cells containing T-DNA product from just a single strain. We anticipate that these data will enable users to develop new approaches to in-leaf library development using Agrobacterium transient expression and reliable combinatorial assaying of multiple heterologous proteins in a single plant cell.


Assuntos
Agrobacterium , Agrobacterium/genética , Plantas/genética , Transfecção , DNA/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Plantas Geneticamente Modificadas/genética
13.
Int J Biol Macromol ; 249: 126055, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37524287

RESUMO

α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60-80 °C and is active and stable over a wide pH range (4.0-9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.


Assuntos
Anoxybacillus , alfa-Amilases , alfa-Amilases/química , Concentração de Íons de Hidrogênio , Hidrólise , Amido/química
14.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37496194

RESUMO

Yarrowia lipolytica is an alternative yeast for heterologous protein production. Based on auto-cloning vectors, a set of 18 chromogenic cloning vectors was developed, each containing one of the excisable auxotrophic selective markers URA3ex, LYS5ex, and LEU2ex, and one of six different promoters: the constitutive pTEF, the phase dependent hybrid pHp4d, and the erythritol-inducible promoters from pEYK1 and pEYL1 derivatives. These vectors allowed to increase the speed of cloning of the gene of interest. In parallel, an improved new rProt recipient strain JMY8647 was developed by abolishing filamentation and introducing an auxotrophy for lysine (Lys-), providing an additional marker for genetic engineering. Using this cloning strategy, the optimal targeting sequence for Rhizopus oryzae ROL lipase secretion was determined. Among the eight targeting sequences, the SP6 signal sequence resulted in a 23% improvement in the lipase activity compared to that obtained with the wild-type ROL signal sequence. Higher specific lipase activities were obtained using hybrid erythritol-inducible promoters pHU8EYK and pEYL1-5AB, 1.9 and 2.2 times, respectively, when compared with the constitutive pTEF promoter. Two copy strains produce a 3.3 fold increase in lipase activity over the pTEF monocopy strain (266.7 versus 79.7 mU/mg).


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Rhizopus oryzae/metabolismo , Lipase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eritritol/metabolismo
15.
Epigenetics ; 18(1): 2231707, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37406176

RESUMO

Long noncoding RNAs have been identified as important regulators of gene expression and animal development. The expression of natural antisense transcripts (NATs) transcribed in the opposite direction to protein-coding genes is usually positively correlated with the expression of homologous sense genes and is the key factor for expression. Here, we identified a conserved noncoding antisense transcript, CFL1-AS1, that plays an important role in muscle growth and development. CFL1-AS1 overexpression and knockout vectors were constructed and transfected into 293T and C2C12 cells. CFL1-AS1 positively regulated CFL1 gene expression, and the expression of CFL2 was also downregulated when CFL1-AS1 was knocked down. CFL1-AS1 promoted cell proliferation, inhibited apoptosis and participated in autophagy. This study expands the research on NATs in cattle and lays a foundation for the study of the biological function of bovine CFL1 and its natural antisense chain transcript CFL1-AS1 in bovine skeletal muscle development. The discovery of this NAT can provide a reference for subsequent genetic breeding and data on the characteristics and functional mechanisms of NATs.


Assuntos
MicroRNAs , RNA Longo não Codificante , Bovinos/genética , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metilação de DNA , Apoptose/genética , Clonagem Molecular , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , RNA Antissenso/genética , RNA Antissenso/metabolismo , MicroRNAs/metabolismo
16.
Protein Expr Purif ; 210: 106314, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37269916

RESUMO

The production of recombinant proteins containing unnatural amino acids, commonly known as genetic code expansion (GCE), represents a breakthrough in protein engineering that allows for the creation of proteins having novel designed properties. The naturally occurring orthogonal pyrrolysine tRNA/aminoacyl-tRNApyl synthetase pair (tRNApyl/PylRS) found in Methanosarcinaceae species has provided a rich platform for protein engineers to build a library of amino acid derivatives suitable for the introduction of novel chemical functionalities. While reports of the production of such recombinant proteins utilizing the tRNApyl/PylRS pair, or mutants thereof, is commonplace in Escherichia coli and mammalian cell expression systems, there has only been a single such report of GCE in the other stalwart of recombinant protein production, the baculovirus expression vector system (BEVS). However, that report formulates protein production within the designs of the MultiBac expression system [1]. The current study frames protein production within the strategies of the more commonplace Bac-to-Bac system of recombinant baculovirus production, via the development of novel baculovirus transfer vectors that harbor the tRNApyl/PylRS pair. The production of recombinant proteins harboring an unnatural amino acid(s) was examined using both an in cis and an in trans arrangement of the tRNApyl/PylRS pair relative to the target protein ORF i.e. the latter resides, respectively, on either the same vector as the tRNApyl/PylRS pair, or on a separate vector and deployed in a viral co-infection experiment. Aspects of the transfer vector designs and the viral infection conditions were investigated.


Assuntos
Aminoacil-tRNA Sintetases , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Código Genético , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/genética
17.
Front Microbiol ; 14: 1171500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125202

RESUMO

Baculovirus expression vector system (BEVS) is a powerful and versatile platform for recombinant protein production in insect cells. As the most frequently used baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes 155 open reading frames (ORFs), including a considerable number of non-essential genes for the virus replication in cell culture. Studies have shown that protein production in BEVS can be improved by removing some viral dispensable genes, and these AcMNPV vectors also offer the possibility of accommodating larger exogenous gene fragments. In this study, we, respectively, deleted 14 DNA fragments from AcMNPV genome, each of them containing at least two contiguous genes that were known nonessential for viral replication in cell culture or functionally unknown. The effects of these fragment-deletions on virus replication and exogenous protein production were examined. The results showed that 11 of the 14 fragments, containing 43 genes, were dispensable for the virus replication in cultured cells. By detecting the expression of intracellularly expressed and secreted reporter proteins, we demonstrated that nine of the fragment-deletions benefited protein production in Sf9 cells and/or in High Five cells. After combining the deletion of some dispensable fragments, we obtained two AcMNPV vectors shortened by more than 10 kb but displayed an improved capacity for recombinant protein production. The deletion strategies used in this study has the potential to further improve the BEVS.

18.
Virus Res ; 332: 199127, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149225

RESUMO

Pseudostellaria heterophylla (P. heterophylla) is a popular Chinese medicinal herb that is cultivated widely in China. Viral infection is commonly encountered during the production of P. heterophylla. To identify viruses causing P. heterophylla disease, sRNA and mRNA libraries were built for 2 sets of P. heterophylla plants, one set that was planted only once (FGP) and one that was planted three consecutive three times (TGP) in a field, using virus-free tuberous roots as reproductive materials. A comprehensive procedure, including assembling virus-derived sRNA (vsRNA), assessing and cloning the full-length viral genome, building an infectious cloning vector and constructing a virus-based expression vector, was performed to identify viruses infecting P. heterophylla. Ultimately, 48 contig-related viruses were mined from 6 sRNA and 6 mRNA P. heterophylla libraries. A 9762-bp fragment was predicted to be the complete genome of TuMV virus. This sequence was cloned from P. heterophylla, and its infectivity was evaluated using the virus-infection model plant Nicotiana benthamiana (N. benthamiana) and host plant P. heterophylla. The resulting 9839-bp viral genome was successfully obtained from P. heterophylla and identified as a new P. heterophylla TuMV-ZR isolate. Simultaneously, TuMV-ZR infectious clones were shown to effectively infect P. heterophylla. Furthermore, TuMV-ZR expression vectors were developed, and the ability of a TuMV-ZR-based vector to express foreign genes was determined by analysis with the reporter gene EGFP. TuMV-ZR-based vectors were found to continuously express foreign genes in different organs of P. heterophylla throughout the whole vegetative period. In addition, TuMV-ZR vectors carrying EGFP accumulated in the tuberous roots of P. heterophylla, confirming that tuberous roots are key targets for viral infection and transmission. This study revealed the core pathogenicity of P. heterophylla mosaic virus and developed a new TuMV-ZR-based expression tool that led to long-term protein expression in P. heterophylla, laying the foundation for the identification of the mechanisms of P. heterophylla infection with mosaic viruses and developing tools to express value proteins in the tuberous roots of the medicinal plant P. heterophylla.


Assuntos
Folhas de Planta , Pequeno RNA não Traduzido , Raízes de Plantas , Vetores Genéticos , RNA Mensageiro/metabolismo
19.
PNAS Nexus ; 2(5): pgad139, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37168669

RESUMO

We introduce a simple, dual direct cloning plasmid system (pgMAX-II) for gene expression analysis in both prokaryotic (Escherichia coli) and mammalian cells. This system, which uses a prokaryotic expression unit adapted from the pgMAX system and a mammalian promoter, is effective for subcloning using the DNA topoisomerase II toxin CcdB. Given that molecular biological cloning systems broadly rely on E. coli for rapid growth, the proposed concept may have wide applicability beyond mammalian cells.

20.
World J Microbiol Biotechnol ; 39(6): 143, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004690

RESUMO

The IPTG-inducible promoter family, Pgrac, allows high protein expression levels in an inducible manner. In this study, we constructed IPTG-inducible expression vectors containing strong Pgrac promoters that allow integration of the transgene at either the amyE or lacA locus or both loci in Bacillus subtilis. Our novel integrative expression vectors based on Pgrac promoters could control the repression of protein production in the absence and the induction in the presence of an inducer, IPTG. The ß-galactosidase (BgaB) protein levels were 9.0%, 15% and 30% of the total cellular protein in the B. subtilis strains carrying single cassettes with the Pgrac01, Pgrac100 or Pgrac212 promoters, respectively. The maximal induction ratio of Pgrac01-bgaB was 35.5 while that of Pgrac100-bgaB was 7.5 and that of Pgrac212-bgaB was 9. The inducible expression of GFP and BgaB protein was stably maintained for 24 h, with the highest yield of GFP being 24% of cell total protein while the maximum amount of BgaB was found to be 38%. A dual integration of two copies of the gfp+ gene into the B. subtilis genome at the lacA and amyE loci resulted in a yield of about 40% of total cellular protein and a 1.74-fold increase in GFP compared with single-integrated strains containing the same Pgrac212 promoter. The capability of protein production from low to high levels of these inducible integrative systems is useful for fundamental and applied research in B. subtilis.


Assuntos
Bacillus subtilis , Vetores Genéticos , Bacillus subtilis/metabolismo , Isopropiltiogalactosídeo/metabolismo , Isopropiltiogalactosídeo/farmacologia , Proteínas Recombinantes/genética , Regiões Promotoras Genéticas , Vetores Genéticos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...